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The resul ts  of calculations of the tempera ture  profiles and v o l t - a m p e r e  charac te r i s t i c s  of a 
long cyl indr ical  argon a rc  in a longitudinal uniform magnetic field are  presented.  The ca lcu-  
lation was made for  the following pa rame te r s :  p ressu re  p =0.1-10.0 atm; t empera tu res  T = 
1000-20,000~ magnetic field induction B---0-10 T; d iameter  of cyl indrical  channel d = l . 0  cm. 
It is shown that for  s t rongly radiating a r c s  (p~l .0  aim) the tempera ture  profi les  become more  
inflated with an increase  in the magnetic field, while for weakly radiating a rc s  (p-< 0.1 atm)the 
appearance of 'Tloops" in the v o l t - a m p e r e  cha rac te r i s t i c s  is typical  for cer ta in  conditions 
(14,000-< T-< 20,000~ B->I.0 T), indicating the impossibil i ty of arc ing under these conditions. 

The cha rac t e r i s t i c s  of  helium and hydrogen a rcs  of low p res su re  (p-< 0.05 atm) in the presence  of a 
longitudinal magnetic  field have been calculated in e a r l i e r  works [1-4] without allowance for the radiation. 
The marked effect of the magnetic field on the tempera ture  profile and the v o l t - a m p e r e  charac te r i s t i c  of 
the a rc  was discovered.  

The present  repor t  is devoted to the calculation of a stabilized channel arc  in a longitudinal magnetic 
field in the presence  of radiation of the gas. Some pre l iminary  resul ts  of this study were published ea r l i e r  
[5].* The calculation was made for an argon a rc  1 cm in d iameter  in the ranges of variat ion in the p re s -  
sure p =0.1-10 atm, in the axial t empera tu res  T0=1000-20,000~ and in the magnetic  field induction B = 
0-10 T. 

Since under  these conditions an~ argon arc  can be considered as optically t ransparent  [6] with a c e r -  
tain degree of accuracy ,  this assumption was used in the calculation, allowing a considerable simplification 
of the computations.  

Another assumption was also made - that local thermodynamic  equilibrium (LTE) is present  in the arc,  
as a resul t  of which no allowance was made for separat ion of the t empera tu res  of the e lect rons  and ions 
o r  the i r  finite recombinat ion rate,  i.e., factors  which can have an effect on the are  charac te r i s t i c s  under 
cer ta in  conditions {at low pressu res )  [7]. We note that making allowance for the nonequilibrium nature of 
the p lasma in the presence  of s t rong magnetic fields is present ly  associa ted with cer ta in  difficulties con-  
nected with the insufficient study of the p lasma proper t ies  and the p rocesses  of energy  exchange under these 
conditions. The adopted assumption that LTE is present  should not have a marked effect on the resul ts  of 
a calculation of the v o l t - a m p e r e  cha rac te r i s t i c s  at p r e s su re s  of 1.0 and 10 atm, but it may affect to a c e r -  
tain extent the quantitative resul ts  pertaining to a p re s su re  of 0.1 atm. Never theless ,  the use of the con-  
cept of LTE allows one to obtain important  resul ts  cha rac te r i z ing  the behavior  of an a rc  in a longitudinal 
magnet ic  field without a very  complicated computational procedure .  

So let us consider  the following problem. A long cyl indrical  arc ,  confined by walls, is burning in a 
slowly moving (M << 1) s t r eam of argon.  A uniform magnetic field with induction B is applied along the arc .  

* Unfortunately, in [5] the v o l t - a m p e r e  charac te r i s t i c  of the arc  for p = l  atm was plotted inaccurately.  
This inaccuracy is co r rec ted  in the present  repor t .  
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M o r e o v e r ,  it is a s s u m e d  that  the t e m p e r a t u r e  g rad ien t  a long  the a r c  is  c o n s i d e r a b l y  s m a l l e r  than the r a d i a l  
g r a d i e n t ,  while convec t ion  can  be neg lec t ed .  T h e r m a l  d i f fus ion  and t h e r m o m a g n e t i c  e f fec t s  were  not t aken  
into account .  

With a l lowance  for  these  a s s u m p t i o n s  the s ta te  p r o b l e m  is r educed  to the so lu t ion  of the e n e r g y  e q u a -  
t ion  for  a c y l i n d r i c a l  a r c  

( - )  i d )~• 0"-'~ ~ - z l  E 2 - u = O  ( t )  
r d r  

with the bounda ry  cond i t ions  

r : 0  : T-~- To and dT/dr==O; 

r=r0:  T = T ~ .  
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Here T is the gas t empera ture ;  E is the e lec t r ic  field strength;  u is the power of the volumetr ic  radia-  
tion of the gas;  q l[ is the e lec t r i ca l  conductivity of the p lasma in the direct ion of the magnetic field; X• 
is the the rma l  conductivity of the gas in the direct ion perpendicular  to the magnetic field vector .  

On the basis of physical  concepts concerning the effect of a magnetic field on the e lec t r ica l  and thermal  
conductivity of a p lasma one can come to the conclusion that kll and ~ I[ should coincide with the co r re spond-  
ing values of )~ and o- in the absence of a magnetic field. The value ~_L=~e• , where he• is the thermal  
conductivity of the e lec t ron  gas ac ros s  the magnetic field and kae is the the rmal  conductivity of the atomic 
gas  and the chemical  the rma l  conductivity due to the t r a n s f e r  of ionization energy.  Under the given con- 
ditions the contribution of the ion component to the thermal  conductivity of the p lasma is ex t remely  small  
[ 8 ] .  

The e lec t ron thermal  conductivity)~e• was calculated from the equation [9] 

t e •  _ _ _ ~ ' U  + ( ~ 4 ~ )  ~- , 

where the coefficient a cha rac te r i zes  the form of interaction of the par t ic les  in the plasma and is a function 
of the exponent m in the express ion  for the collision frequency of the par t ic les  as a function of their  ve-  
locity and)9 e is the Hall pa r ame te r  for  the e lec t rons ,  which var ies  within wide limits from fie =0 to fie <<1. 
We note that the Hall pa rame te r  is ex t remely  smal l  for  the ions. According to [9], 

2,5 
2.5 ~- m q- n~ " 

For  low t empera tu res  (T-< 8000~ in argon the e lectron thermal  conductivity is determined mainly by the 
e l e c t r o n - a t o m  interactions,  which can be descr ibed with the help of a model of solid spheres  (m =0.5}, 
while for  high t empera tu res  (T > 10,000~ the Coulomb interactions (m =-1 .5)  have the dominant effect on 

the  value of k e. In both cases  ~ =0.77.  Only in the small  t empera tu re  interval of 8000 <T <10,000~ when 
the contributions of the Coulomb and e l e c t r o n - a t o m  coll isions are  comparable ,  can the value of ~ vary  in 
the range of 0.77-1.1. 
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Since in the indicated tempera ture  interval,  as will be shown below, the value of k• does not change 
ve ry  much under the effect of a magnetic field, in the subsequent calculations we took c~ =0.77 for the entire 
t empera tu re  range T =1000-20,000~ The calculation of X e tl was made using the third approximation of 
the C h a p m a n - E n s k o g  method for T > 10,000~ and by the approximate methods of [10] for T <10,000~ 
The values of k e were calculated and the values of Xac were determined as the difference between the data 
of [8] on X I[ and the calculated values of X e. The resul ts  of the calculation of k• Xe• , and Xac of argon as 
functions of the t empera tu re  for p r e s s u r e s  of 0.1, 1.0, and 10.0 atm and different values of the magnetic 
field induction (B=0-10 T) are shown in Fig. l (a -c ) .  It is seen that the effect of the magnetic field on X_t 
and Xe• is especial ly important  at p =0.1 aim. 

Equation (1) was solved numerical ly  on an e lect ronic  computer  with allowance for  the values of Xxob- 
rained. The values of k [[ '  a l l ,  and u were taken from [8, 11-14]. The resul ts  of the calculations are p r e -  
sented in Figs.  2-4, where some charac te r i s t i c  tempera ture  profiles are shown, and in Figs.  5-7, where 
the v o l t - a m p e r e  cha rac te r i s t i c s  of the a rcs  are shown. 

Let us examine the resul ts  obtained in more  detail. It is seen f rom the calculations that with fixed 
values of p, r0, and T o the e lec t r ic  field s t rength and the arc  current  decrease  monotonically with an in- 
c rease  in the magnetic field strength.  In this case the decrease  in E is slight while that of the current  
strength I is considerable.  For  example,  with p=0.1 atm and T0=20,000~ the values E=5.83 ,  5.12, 4.88, 
4.84, and 4.81 V/cm and I=251,  194, 170, 164, and 160 A correspond to B=0,  1, 2, 3, and 10 T, while in the 
case of p =1 atm and T0=20,000~ the values E =10.4, 10.1, and 9.7 V / c m  and I=633,  614, and 521 A c o r -  
respond to B =0, 3, and 10 T. 

It should be noted that the calculated v o l t - a m p e r e  charac te r i s t i c  for B =0 T and p = l  atm agrees  sa t i s -  
factori ly with the experimental  one of [15]. In this case ra ther  good agreement  is observed for E in the 
entire range of variat ion of T o examined while a cer tain understat ing is observed for the current  in the range 
of T0=10,000-12,000~ For  T0=12,000-14,000~ the agreement  of the calculated and experimental  values 
of the cur ren t  strength,  as seen f rom Fig. 5, is quite sa t i s fac tory .  A compar ison  between the calculated 
resul ts  obtained and the data of p re l iminary  experiments  at p r e s su re s  of 0.1 and 10 aim [16] shows that 
because separat ion of the electron tempera tu re  is neglected the calculated values of I at p =0.1 atm can be 
unders ta ted compared  with the exper imental  values in a wider interval  of T 0. Some understat ing of the ca l -  
culated values of E is evidently observed at p =10 aim. 

Let us examine the tempera ture  profi les presented in Figs.  2 and 4. In o rde r  to interpret  the resul ts  
obtained more  clear ly ,  let us analyze Eq. (1). After  integration we obtain 

T = T o -- ( ~" ( E ~ 
(2) 

6' k ,'b~ (aD - - u )  rdr. 

From this it is seen that two values affect the form of the radial  t empera tu re  profile in a stabilized 
discharge in the presence  of volumetr ic  radiation: (~[[ E2-u)  and Xz. The role of the f i rs t  of these is d is -  
cussed in detail in [171. For  the ease of s t rongly radiating, optically t ransparen t  a res  in the ease when u 
becomes commensura te  with Gr]] E 2 the t empera tu re  profile is made more  inflated than follows from (2). 

On the other hand, an increase in the magnetic  field, i.e., a decrease  in )ix, leads to the opposite effect: 
the t empera tu re  profile should be less inflated. In this case one should expect the greates t  effect of the 
magnetic field to be displayed only for axial arc  t empera tu res  T O =16,000-18,000~ which corresponds  to 
a very  s t rong decrease  in Xz(see Fig. 1). At lower axial t empera tu res  the decrease  in X• is not so great,  
so that the effect of the magnetic field on the tempera ture  profile of the a rc  is displayed to a l e s se r  extent. 
The t empera tu re  distributions presented in Fig. 2 for T O =20,000 and 10,000~ at p =0.1 atm illustrate the 
effect of the dependence Xx=f(B, T) on the tempera ture  profile,  since tlie role of radiation is insignificant 
in this case .  Whereas for T0=10,000~ a very  small  change in the tempera ture  distribution is observed 
upon an increase in B f rom 0 to 10 T, for  T0=20,000~ the t empera tu re  profile is deformed very  cons ider -  
ably with an increase  in B. The formation of a t empera ture  peak in the center  of the a rc  with an increase 
in the magnetic field s trength in the interval of 18,000-20,000~ is cha rac te r i s t i c .  In this case a "loop" 
appears  in the v o l t - a m p e r e  charac te r i s t i c  of the arc  (see Fig. 6), indicating that when the a rc  is supplied 
from ordinary  cur ren t  sources  its burning becomes impossible under the given conditions. 

It is convenient to clar i fy the behavior  Of the v o l t - a m p e r e  charac te r i s t i c s  on the example of a non- 
radiating arc  (with p-< 0.1 atm, let us say). F rom Eq. (1) we find that  

E ~  ' ' '~ (~ /1~1~ (3) 
oil r ~l,-k ~ I erl)" 
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In addition, 

I = 2 .hE I o r d r .  (4) 
b 

Since (rll (T) i n c r e a s e s  monotonical ly  for  T >-8000~ ( ~ T 3 / 2 )  while the dependence X• has a compl ica ted  
nature  it is convenient to divide the t e m p e r a t u r e  in terva l  T o into th ree  pa r t s  to evaluate  the effect  of  X. 
on E. 

In the interval of T0=104-12.5. 103~ the value of 7,1 increases strongly with To, as a consequence of 
which E and I increase, as seen from (3) and (4). In the region of 12,500 <To--- 17000~ at a fixed B the 
t h e r m a l  conductivity X• d e c r e a s e s  f a s t e r  than ~ll i nc rea se s  with an increase  in To, as a consequence of 
which E d e c r e a s e s  while I continues to i nc rease .  Finally, in the th i rd  region of 17000-< T 0-< 20,000~ the 
value of X •  little with an inc rease  in T o when B is fixed, while the t e m p e r a t u r e  profi le  becomes  
sharply  i r r e g u l a r .  The re fo re ,  under  ce r ta in  conditions, when B - 2  T and p =0.1 a tm,  for  example ,  E and I 
can dec rease  with an inc rease  in T O . 

At high p r e s s u r e s  ( p - l . 0  atm) the format ion  of the t e m p e r a t u r e  profi le  of an a r c  burning in a longi-  
tudinal magnet ic  field can be affected in equal  m e a s u r e  by both the reduction in ~ .  and the inc rease  in the 
radiat ion,  i .e. ,  the dec rease  in the value (~[I E2-u) ,  which is i l lus t ra ted  in Fig. 4. Thus,  in the case  of 
p = l  a tm the t e m p e r a t u r e  prof i le  becomes  less  inflated with an inc rease  in B at T0=12,000~ and 10,000~ 
while at T O =14,000~ it becomes  more  inflated. In the case of p =10 atm,  as indicated above, the t e m p e r a -  
ture  profi le  is made more  inflated in the core  of the a rc  while in the boundary regions the t e m p e r a t u r e  
gradients  a re  d e c r e a s e d  in all  c a se s  because  of the reduction in the amount of e n e r g y t r a n s f e r r e d b y t h e r m a l  
conduction. 

An es t ima te  of the effect  of the separa t ion  of the e lec t ron  t e m p e r a t u r e  f rom the t e m p e r a t u r e  of the 
heavy pa r t i c l e s ,  made by the method presen ted  in [17], shows that,  for  example ,  for  p =1 a tm and Te0 = 
14,000~ at B =0 and 10 T the values  of E differ  little f rom the cor responding  values found under  the con-  
ditions of the absence  of a t e m p e r a t u r e  separa t ion ,  while the cu r r en t s  a re  somewhat  inc reased  (by about 
10-12% in this case) .  The nature of the t e m p e r a t u r e  prof i les  and the v o l t - a m p e r e  c h a r a c t e r i s t i c s  is not 
a l t e red  essen t ia l ly  in this case .  

In conclusion,  we note that  the p rob lem of the magnetogasdynamic  instabi l i ty of an a rc  burning in a 
longitudinal magnet ic  field is not cons idered  in this r epor t  since this quest ion r equ i re s  an independent de-  
ta i led study. 
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